
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Ghanbari, Bahram and Tangeysh, Behzad(2009) 'CoSALEN as a new catalyst for oxidation of fullerene C₆₀', Journal of Coordination Chemistry, 62: 20, 3384 — 3390 **To link to this Article: DOI:** 10.1080/00958970903051916 **URL:** http://dx.doi.org/10.1080/00958970903051916

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CoSALEN as a new catalyst for oxidation of fullerene C_{60}

BAHRAM GHANBARI* and BEHZAD TANGEYSH

Department of Chemistry, Sharif University of Technology, Tehran, P.O. Box 11155-9516, Iran

(Received 31 December 2008; in final form 6 March 2009)

The effect of CoSALEN on anti-oxidative properties of fullerene C_{60} in the presence of O_2 in cumene was investigated. A comparison was made between the role of the CoSALEN as a catalyst in the C_{60} oxidation and oxidation in the presence of an initiator, i.e., AIBN. A mechanism is proposed for the catalytic role of CoSALEN in oxidation of C_{60} . Oxidation of octadecylaminofullerene C_{60} at the same conditions reveals that oxidation could be a result of hydroperoxidation of the unreacted sites of C_{60} . We conclude that C_{60} as well as its aminoderivatives enhance the efficiency of CoSALEN in the oxidation of cumene due to their radical scavenging property of their unreacted double-bond sites.

Keywords: Fullerene; CoSALEN; Catalyst; Oxidation

1. Introduction

The O₂-carrying property of synthetic cobalt Schiff bases have been studied extensively. The reversibility of dioxygen adduct formation was not demonstrated until 1938 when Tsumaki [1] showed that the color change observed upon exposing cobalt(II)di-(salicylal)-ethylenediimine (CoSALEN) to air was due to reversible oxygenation. Then, Bailes and Calvin [2] extensively studied O₂ carrier properties of Co(II) complexes with SALEN-type ligands. In the 1980s, Drago demonstrated the possibility of catalyzing oxidation of phenols by metal-dioxygen adducts. He showed that CoSALEN complexes catalyze the oxidation of different phenol derivatives due to their ability to produce hydroperoxide radicals and oxidation initiation [3].

Fullerene C_{60} is efficient in trapping radicals [4]. The high affinity of this nanoparticle as well as its derivatives towards reaction with radicals makes it a candidate as a radical scavenger [5]. The radical sponging property of C_{60} could be considered in terms of its reaction with peroxy radicals [6]. Basically, a radical addition mechanism was proposed to explain the formation of C_{60} peroxides [7].

The anti-oxidative property of C_{60} towards cumene oxidation was reported previously in the presence of 2,2-azobis-iso-butyronitrile (AIBN) as initiator [8]. Thermal decomposition of AIBN is the key in the initiation of the oxidation reaction and C_{60} inhibits the oxidation via scavenging chain transfer radicals, cumylperoxyl

^{*}Corresponding author. Email: ghanbari@sharif.edu

radicals, as well as 1-cyano-1-propylperoxyl radicals formed at AIBN decomposition in the presence of O_2 [9].

In a previous report, fullerene C_{60} and its lipophilic amine derivative had strong efficiency in termination of cumene chain radical reaction due to their radical sponging property [8]. In this work, we investigate the effect of CoSALEN–O₂ on oxidation of C_{60} and its amine derivative.

2. Experimental

2.1. Instrumentation and chemicals

AIBN was purchased from Acros Organics (98%), C_{60} (98%) was purchased from BuckyUSA Company, octadecylamine was purchased from Aldrich (97%), and cumene (Fluka) was boiled under reflux over Na in a N₂ atmosphere for 2 h. Distillation under N₂ gave a fraction at b.p. of 152. The UV-Vis spectra were recorded on a Varian Cary 200 UV Bio Visual Spectrophotometer. The UV-Vis spectra of the reaction mixtures of samples in absence of AIBN were run during the reaction and the wavelengths of the observed bands are summarized in table 1.

2.2. Oxidation rate measurement

Both the apparatus and the measurement method have been described previously [10]. The final volume of sample solutions of cumene, toluene, diethylbenzene, *p*-xylene, and *sec*-butylbenzene both as reagent and as solvent were 5 mL and all measurements were done at 60°C. The concentrations of C₆₀, CoSALEN, and AIBN were also 5×10^{-4} M, 0.01 M, and 0.06 M, respectively, except where indicated. The amount of O₂ adsorption was measured both in the presence and absence of AIBN as initiator.

2.3. Investigation of the effect of solvent

The effect of solvent was observed in terms of their capability to act as H-donor reagent like cumene using organic solvents such as toluene, xylene, diethylbenzene, cumene, and *sec*-butylbenzene.

Table 1. The UV-Vis absorption bands on reaction mixtures for oxidation of cumene catalyzed by CoSALEN in presence of O_2 .

Sample no.	Reaction mixture containing	λ_{max}	Absorbance
1	C ₆₀	285.2	0.45
2	CoSALEN	284.8	2.15
3	$CoSALEN + C_{60}$	287.0, 382.7	2.97, 0.61

2.4. Preparation of octade cylaminoful lerene C_{60}

The compound was prepared and characterized according to the previously reported procedure [11].

2.5. Preparation of CoSALEN

The compound was prepared and characterized according to the procedure reported [12].

3. Results and discussion

We investigate the effect of CoSALEN, C_{60} , and both (figures 1a, c, and d, respectively) on oxidation of cumene by O_2 in the presence of AIBN. Their O_2 uptake is compared with the blank sample (without CoSALEN and C_{60}) shown in figure 1(b). As expected, there was no O_2 uptake during the reaction of cumene with AIBN in the presence of C_{60} (figure 1a) in comparison with the blank sample (figure 1b) up to ~1 h. Addition of CoSALEN demonstrates a significant increase in the O_2 consumption (figure 1c). In spite of our previous observation for oxidation inhibition of cumene in the presence of C_{60} and ZDDP complex [8], upon replacing of ZDDP by CoSALEN the oxidation process was facilitated. To ensure the role of C_{60} , the reaction was conducted in the absence of fullerene. The results shown in figure 1(d) confirm the synergistic effect of C_{60} on O_2 consumption rate.

The effect of AIBN was investigated, and the results (figure 2) show that the presence of AIBN has no significant effect on the amount of O_2 consumption and the content of C_{60} effectively determines the rate of O_2 uptake. Practically, it reveals that the complex has more catalytic role in O_2 adsorption than AIBN.

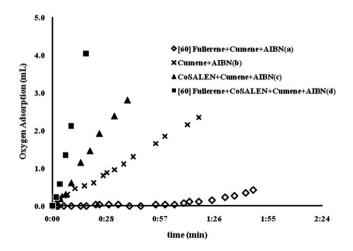


Figure 1. The effect of: (a) C_{60} , (b) blank sample, (c) CoSALEN, and (d) CoSALEN + C_{60} on cumene oxidation measured by O_2 uptake in the presence of AIBN.

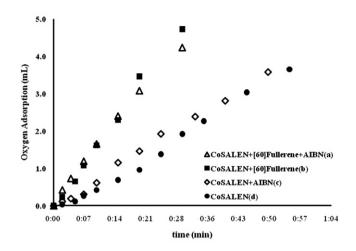


Figure 2. The effect of AIBN on O₂ consumption in solutions of CoSALEN and/or C₆₀ in cumene.

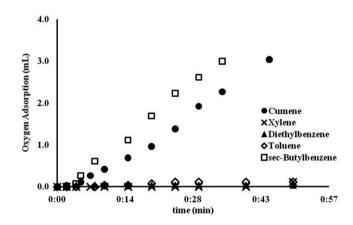
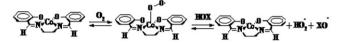
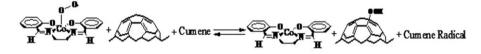


Figure 3. The effect of different solvents on O₂ consumption of CoSALEN.


UV-Vis spectroscopy was applied to understand chemical changes during the reaction. Both increasing intensity of the band at *ca* 285 nm as well as formation of a new band at 383 nm indicate some chemical changes (table 1).

The effect of solvent on oxidation reaction was also investigated. According to the data in figure 3, solvents such as toluene, xylene, and diethylbenzene showed no O_2 adsorption while the amount of the adsorption by cumene and *sec*-butylbenzene were considerable. The O_2 adsorption of CoSALEN in cumene and *sec*-butylbenzene are due to the ability of these solvents to release radical hydrogen at the initiation step of the reaction. This is consistent to the results (summarized in table 2) from autoxidation of aromatic hydrocarbons with only one reactive hydrogen available for abstraction towards O_2 [13].


The catalytic character of CoSALEN in oxidation of hindered phenols is well known [3]. According to the proposed mechanism shown in scheme 1, hydrogen radical released from phenol (HOX) binds to coordinated O_2 and initiates the oxidation reaction.

Hydrocarbon	Relative reactivity	Hydrocarbon	Relative reactivity
PhCH(CH ₃) ₂ PhCH ₂ CH = CH ₂ (Ph) ₂ CH ₂	1.0 0.8 0.35	PhCH ₂ CH ₃ PhCH ₃	0.18 0.015

Table 2. Relative reactivity of some aromatic hydrocarbon solvents towards O₂.

Scheme 1. The mechanism for the oxidation of hindered phenols (HOX) by CoSALEN.

Scheme 2. The proposed mechanism of C_{60} oxidation by CoSALEN.

Our experiments support the catalytic reaction of O_2 with cumene in the presence of CoSALEN, following the same mechanism with oxidation of phenols due to release of hydrogen and formation of cumene radical [13]. The increase in the amount of O_2 consumption during cumene oxidation (figure 2c) could be attributed to the high tendency of C_{60} in sponging hydroperoxide radicals that are produced by CoSALEN– O_2 . Scavenging of free hydroperoxide radicals by C_{60} could shift the equilibrium shown in scheme 2 to the left. This suggests the mechanism in terms of the role of C_{60} shown in scheme 2.

We also investigated the effect of CoSALEN on anti-oxidative properties of the lipophilic aminofullerene C_{60} , i.e., octadecylaminofullerene C_{60} , which has been shown to be an efficient anti-oxidant [8] for cumene oxidation in the presence of AIBN. Since the amination of the C_{60} was supposed to leave less unreacted double bonds on C_{60} , the derivative should show less tendency to O_2 uptake in the cumene oxidation by CoSALEN than C_{60} . As evident from figure 4, similar to C_{60} , the octadecylaminofullerene increases the rate of O_2 consumption by CoSALEN.

Oxygen adsorption of CoSALEN was measured at higher concentrations of C_{60} as well as its derivative (figure 5). Upon doubling the concentration of C_{60} , there were more differences between C_{60} and its derivative in terms of their maximum limit of O_2 adsorption, confirming that the more the availability active sites on the C_{60} moiety in each case, the higher is the O_2 uptake.

It is also evident from figure 5 that there is a termination for both cases (but at different levels of O_2 consumption), which could be attributed to deactivation of the CoSALEN catalyst. To prove this, we added the same amount of catalyst after termination of the reaction. In this case, the rate of O_2 absorption increased abruptly confirming catalyst deactivation; this experiment is shown in figure 5(a).

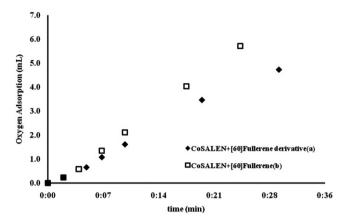


Figure 4. O_2 uptake by CoSALEN in cumene in the presence of: (a) C_{60} , (b) octadecylaminofullerene (5×10^{-4} M in terms of C_{60} contents).

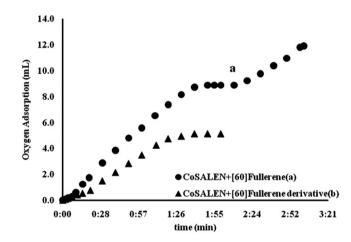


Figure 5. The effect of C_{60} concentration on O_2 adsorption limit in cumene: (a) CoSALEN + C_{60} (10⁻³ M) and the effect of a new portion of CoSALEN added to the reaction mixture. The catalyst was added at point (a) at the same concentration of the catalyst, and (b) CoSALEN + octadecylaminofullerene (10⁻³ M in terms of C_{60} content).

 C_{60} has more active sites (carbon double bonds) than its amine derivative, adsorbs more hydroperoxyl radicals and rapidly deactivates the catalyst.

Acknowledgment

This work was supported by Research Office of Sharif University of Technology.

References

- [1] T. Tsumaki. Bull. Chem. Soc. Jpn, 13, 252 (1938).
- [2] R.H. Bailes, M. Calvin. J. Am. Chem. Soc., 69, 1886 (1947).
- [3] A. Zombeck, R.S. Drago, B.B. Corden, J.H. Gaul. J. Am. Chem. Soc., 103, 7580 (1981).

- [4] L. Gan, S. Huang, X. Zhang, A. Zhang, B. Cheng, H. Cheng, X. Li, G. Shang. J. Am. Chem. Soc., 124, 13384 (2002).
- [5] H.S. Nalwa (Ed.). Encyclopedia of Nanoscience and Nanotechnology, Vol. 3, p. 572, American Scientific Publishers, New York (2004).
- [6] G. Liangbing. C.R. Chimie, 9, 1001 (2006).
- [7] S. Huang, Z. Xiao, F. Wang, L. Gan, X. Zhang, X. Hu, S. Zhang, M. Lu, Q. Pan, L. Xu. J. Org. Chem., 69, 2442 (2004).
- [8] B. Ghanbari, A.A. Khailli, Z. Taheri, B. Mohajerani, M. Soleymani Jamarani. Fuller. Nanotub. Car. N., 15, 439 (2007).
- [9] W. Ford, T. Nishioka, F. Qiu. J. Org. Chem., 65, 5780 (2000).
- [10] L. Bateman, J.I. Cunneen. J. Chem. Soc., 1596 (1955).
- [11] B. Ghanbari, Z. Taheri, M. Shekarriz, S. Taghipoor, B. Mohajerani, M. Soleymani Jamarani. Fuller. Nanotub. Car. N., 14, 315 (2006).
- [12] M. Calvin, R.H. Bailes, W.K. Wilmarth. J. Am. Chem. Soc., 68, 2254 (1946).
- [13] G.A. Russel. J. Am. Chem. Soc., 78, 1047 (1956).